High-Density Polyethylene Pipe Butt-Fusion Joint Detection via Total Focusing Method and Spatiotemporal Singular Value Decomposition

Author:

Zhang Haowen1,Wang Qiang1ORCID,Zhou Juan1ORCID,Wu Linlin1,Xu Weirong2,Wang Hong2

Affiliation:

1. College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China

2. Huzhou Special Equipment Inspection and Research Institute, Huzhou 313099, China

Abstract

High-density polyethylene (HDPE) pipes are widely used for urban natural gas transportation. Pipes are usually welded using the technique of thermal butt fusion, which is prone to manufacturing defects that are detrimental to safe operation. This paper proposes a spatiotemporal singular value decomposition preprocessing improved total focusing method (STSVD-ITFM) imaging algorithm combined with ultrasonic phased array technology for non-destructive testing. That is, the ultrasonic real-value signal data are first processed using STSVD filtering, enhancing the spatiotemporal singular values corresponding to the defective signal components. The TFM algorithm is then improved by establishing a composite modification factor based on the directivity function and the corrected energy attenuation factor by adding angle variable. Finally, the filtered signal data are utilized for imaging. Experiments are conducted by examining specimen blocks of HDPE materials with through-hole defects. The results show the following: the STSVD-ITFM algorithm proposed in this paper can better suppress static clutter in the near-field region, and the average signal-to-noise ratios are all higher than the TFM algorithm. Moreover, the STSVD-ITFM algorithm has the smallest average error among all defect depth quantification results.

Funder

This research was supported by National Key Research and Development Program of the China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3