Research on Sea State Signal Recognition Based on Beluga Whale Optimization–Slope Entropy and One Dimensional–Convolutional Neural Network

Author:

Li Yuxing12ORCID,Gu Zhaoyu1,Fan Xiumei1

Affiliation:

1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China

Abstract

This study introduces a novel nonlinear dynamic analysis method, known as beluga whale optimization–slope entropy (BWO-SlEn), to address the challenge of recognizing sea state signals (SSSs) in complex marine environments. A method of underwater acoustic signal recognition based on BWO-SlEn and one-dimensional convolutional neural network (1D-CNN) is proposed. Firstly, particle swarm optimization–slope entropy (PSO-SlEn), BWO-SlEn, and Harris hawk optimization–slope entropy (HHO-SlEn) were used for feature extraction of noise signal and SSS. After 1D-CNN classification, BWO-SlEn were found to have the best recognition effect. Secondly, fuzzy entropy (FE), sample entropy (SE), permutation entropy (PE), and dispersion entropy (DE) were used to extract the signal features. After 1D-CNN classification, BWO-SlEn and 1D-CNN were found to have the highest recognition rate compared with them. Finally, compared with the other six recognition methods, the recognition rates of BWO-SlEn and 1D-CNN for the noise signal and SSS are at least 6% and 4.75% higher, respectively. Therefore, the BWO-SlEn and 1D-CNN recognition methods proposed in this paper are more effective in the application of SSS recognition.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3