Abstract
AbstractTwo-speed clutchless automated manual transmission (AMT) has been widely implemented in electric vehicles for its simple structure and low cost. In contrast, due to the complex response characteristics of powertrain, utilizing clutchless AMT in a hybrid power system comes with complex coordination control problems. In order to address these issues, a power-split hybrid electric bus with two-speed clutchless AMT is studied in this paper, and a coordinated control method based on model predictive control (MPC) is used in gear shifting control strategy (GSCS) to improve gear shifting quality and reduce system jerk. First, the dynamic model of power sources and other main powertrain components including a single planetary gear set and AMT are established on the basis of data-driven and mechanism modeling methods. Second, the GSCS is put forward using the segmented control idea, and the shifting process is divided into five phases, including (I) unloading of drive motor, (II) shifting to neutral gear, (III) active speed synchronization by drive motor, (IV) engaging to new gear, and (V) resuming the drive motor’s power, among which the phases I and V have evident impact on the system jerk. Then, the MPC-based control method is adopted for these phases, and the fast compensation of driving torque is realized by combining the prediction model and quadratic programming method. The simulation results show that the proposed GSCS can effectively reduce shift jerk and improve driving comfort. This research proposes a coordinated control strategy of two-speed clutchless AMT, which can effectively improve the smoothness of gear shifting and provides a reference for the application of two speed clutchless AMT in power-split hybrid powertrains.
Funder
National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献