An Integrated Control Approach for Shifting Process of Single-Axis Parallel Hybrid Electric Vehicle with a Multi-Speed AMT Gearbox

Author:

Huang Cheng12ORCID,Du Changqing12ORCID

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528200, China

Abstract

When a single-axis parallel hybrid electric vehicle (HEV) equipped with a multi-speed AMT gearbox is in its shifting process, the superposition of dynamic characteristics of multiple power sources and the intervention and withdrawal of AMT transmissions can easily cause significant vehicle longitudinal jerk. To achieve rapid and smooth output changes during the shifting process, this paper proposes an integrated multi-stage robust shifting control method for a single-axis parallel hybrid electric vehicles with a multi-speed AMT gearbox. First, models of key driveline components are constructed, and the shifting process is divided into five stages to provide a clear description of the control problem. Subsequently, we reproduce an integrated multistage robust control method to achieve favorable switching performance and control robustness under external disturbances. We propose a data-driven model predictive control strategy based on additional constraints in the torque unloading and recovery phases. Simultaneously, we present a joint control algorithm that integrates the optimal control and disturbance suppression in the speed synchronization phase. In addition, we develop a sliding mode auto-disturbance rejection control algorithm to achieve accurate position tracking of the shift actuator in the pickup and engage phases. Finally, simulations and bench tests are carried out to verify the effectiveness of the robust control method under different driving conditions. The results demonstrate that the proposed control method can not only coordinate the torque across different power sources and clutch while minimizing vehicle longitudinal jerk, shift time, and friction work, but also provides apparent robustness to model uncertainties and external disturbance. Therefore, the proposed method may offer a theoretical reference for the actual vehicle controller during shifting.

Funder

National Natural Science Foundation of China

Key R&D project of Hubei Province, China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3