Simple model for estimation of absorbed dose by organs and tumors after PRRT from a single SPECT/CT study

Author:

Chicheportiche AlexandreORCID,Sason Moshe,Godefroy Jeremy,Krausz Yodphat,Zidan Mahmoud,Oleinikov Kira,Meirovitz Amichay,Gross David J.,Grozinsky-Glasberg Simona,Ben-Haim Simona

Abstract

Abstract Background Following each cycle of peptide receptor radionuclide therapy (PRRT), absorbed doses by tumors and normal organs are typically calculated from three quantitative single-photon emission computed tomography (SPECT)/computed tomography (CT) studies acquired at t1 = 24 h, t2 = 96 h, t3 = 168 h after the first cycle of treatment and from a single study at t1 after the subsequent cycles. In the present study, we have assessed the feasibility of a single SPECT/CT study after each PRRT cycle using a trained multiple linear regression (MLR) model for absorbed dose calculation and have evaluated its impact on patient management. Quantitative [177Lu]-DOTA-TATE SPECT/CT data after PRRT of seventy-two consecutive metastatic neuroendocrine tumors patients were retrospectively evaluated. A set of 40 consecutive studies was used to train the MLR model. The two independent variables of the model included the time of imaging after administration of the treatment and the radiopharmaceutical activity concentration in a given  organ/tumor. The dependent variable was the dose absorbed by the organ/tumor obtained with the standard protocol. For bone marrow dosimetry, the independent variables included the time of imaging, and the blood and remainder of the body activity concentration. The model was evaluated in 32 consecutive patients. Absorbed doses were assessed for kidneys, bone marrow, liver, spleen and tumor sites. Results There was no difference in management decisions, whether PRRT can be safely continued or not because unsafe absorbed dose to risk organs between the standard and the MLR model-based protocol using a single SPECT/CT study performed at t3 = 168 h after the first cycle and at t1 = 24 h after the subsequent cycles. Cumulative absorbed doses were obtained with mean relative differences of − 0.5% ± 5.4%, 1.6% ± 15.1%, − 6.2% ± 7.3%, − 5.5% ± 5.8% and 2.9% ± 12.7% for kidneys, bone marrow, liver, spleen and tumors, respectively (Pearson’s r correlation coefficient 0.99, 0.91, 0.99, 0.99 and 0.97, respectively). Conclusion Dosimetry calculations using a MLR model with a single SPECT/CT study are in good agreement with the standard protocol, while avoiding the use of dosimetry software and enabling improved patient comfort and reduced scanner and staff time.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3