Generation of high photocurrent in three-dimensional silicon quantum dot superlattice fabricated by combining bio-template and neutral beam etching for quantum dot solar cells

Author:

Igarashi Makoto,Hu Weiguo,Rahman Mohammad Maksudur,Usami Noritaka,Samukawa Seiji

Abstract

Abstract We fabricated a three-dimensional (3D) stacked Si nanodisk (Si-ND) array with a high aspect ratio and uniform size by using our advanced top-down technology consisting of bio-template and neutral beam etching processes. We found from conductive atomic microscope measurements that conductivity became higher as the arrangement was changed from a single Si-ND to two-dimensional (2D) and 3D arrays with the same matrix of SiC, i.e., the coupling of wave functions was changed. Moreover, our theoretical calculations suggested that the formation of minibands enhanced tunneling current, which well supported our experimental results. Further analysis indicated that four or more Si-NDs basically maximized the advantage of minibands in our structure. However, it appeared that differences in miniband widths between 2D and 3D Si-ND arrays did not affect the enhancement of the optical absorption coefficient. Hence, high photocurrent could be observed in our Si-ND array with high photoabsorption and carrier conductivity due to the formation of 3D minibands.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3