Author:
Chen Kuan-Hung,Wang Ching-Chi,George Tom,Li Pei-Wen
Abstract
Abstract
We report a unique growth and migration behavior of Ge nanocrystallites mediated by the presence of Si interstitials under thermal annealing at 900°C within an H2O ambient. The Ge nanocrystallites were previously generated by the selective oxidation of SiGe nanopillars and appeared to be very sensitive to the presence of Si interstitials that come either from adjacent Si3N4 layers or from within the oxidized nanopillars. A cooperative mechanism is proposed, wherein the Si interstitials aid in both the migration and coarsening of these Ge nanocrystallites through Ostwald ripening, while the Ge nanocrystallites, in turn, appear to enhance the generation of Si interstitials through catalytic decomposition of the Si-bearing layers.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference18 articles.
1. Hu SM: Formation of stacking faults and enhanced diffusion in the oxidation of silicon. J Appl Phys 1974, 45(4):1567–1573. 10.1063/1.1663459
2. Antoniadis DA, Moskowitz I: Diffusion of substitutional impurities in silicon at short oxidation times: an insight into point defect kinetics. J Appl Phys 1982, 53(10):6788–6796. 10.1063/1.330067
3. Ronay M, Schad RG: New insight into silicide formation: the creation of silicon self-interstitials. Phys Rev Lett 1990, 64: 2042–2045. Sukegawa T, Tomita H, Fushida A, Goto K, Komiya S and Nakamura T: Transmission Electron Microscopy Observation of CoSix Spikes in Si Substrates during Co-silicidation Process. Jpn J Appl Phys 1997, 36: 6244–6249 10.1103/PhysRevLett.64.2042
4. Subramanian C, Hayden J, Taylor W, Orlowski M, McNelly T: Reverse short channel effect and channel length dependence of boron penetration in PMOSFETs. Proceedings of international electron devices meeting. Washington: 1995. 10–13 December: 423–426; Devine RAB, Mathiot D, Warren WL, Fleetwood DM, Aspar B: Point defect generation during high temperature annealing of the Si‒SiO2 interface. Appl Phys Lett 1993, 63(21): 2926–2928.
5. Leroy B: Kinetics of growth of the oxidation stacking faults. J Appl Phys 1979, 50(12):7996–8005. 10.1063/1.325984
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献