Inhibition of dynamin-dependent endocytosis increases shedding of the amyloid precursor protein ectodomain and reduces generation of amyloid β protein

Author:

Carey Robyn M,Balcz Brigitte A,Lopez-Coviella Ignacio,Slack Barbara E

Abstract

Abstract Background The amyloid precursor protein (APP) is transported via the secretory pathway to the cell surface, where it may be cleaved within its ectodomain by α-secretase, or internalized within clathrin-coated vesicles. An alternative proteolytic pathway occurs within the endocytic compartment, where the sequential action of β- and γ-secretases generates the amyloid β protein (Aβ). In this study, we investigated the effects of modulators of endocytosis on APP processing. Results Human embryonic kidney cells were transfected with a dominant negative mutant of dynamin I, an important mediator of clathrin-dependent endocytosis, and APP proteolysis was analyzed. Overexpression of the mutant dynamin (dyn I K44A) resulted in increased shedding of the APP ectodomain (sAPPα), accumulation of the C-terminal α-secretase product C83, and a reduction in the release of Aβ. Levels of mature APP on the cell surface were increased in cells expressing dyn I K44A, and internalization of surface-immunolabeled APP, assessed by fluorescence microscopy, was inhibited. Dynamin is a substrate for protein kinase C (PKC), and it was hypothesized that activators of PKC, which are known to stimulate α-secretase-mediated cleavage of APP, might exert their effects by inhibiting dynamin-dependent endocytosis. However, the internalization of surface-biotinylated APP was unaffected by treatment of cells with phorbol 12-myristate 13-acetate in the presence of the α-secretase inhibitor TAPI-1. Conclusion The results indicate that APP is internalized by a dynamin-dependent process, and suggest that alterations in the activity of proteins that mediate endocytosis might lead to significant changes in Aβ production.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3