Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid‐beta secretion

Author:

Jeong Jangho1,Kim Ok‐Hyeon2,Shim Jaeyeoung1,Keum Seula1,Hwang Ye Eun1,Song Seongeun1,Kim Jung‐Woong1,Choi Jee‐Hye1,Lee Hyun Jung23,Rhee Sangmyung1ORCID

Affiliation:

1. Department of Life Science Chung‐Ang University Seoul Republic of Korea

2. Department of Anatomy and Cell Biology, College of Medicine Chung‐Ang University Seoul Republic of Korea

3. Department of Global Innovative Drugs Graduate School of Chung‐Ang University Seoul Republic of Korea

Abstract

AbstractExcessive production and accumulation of amyloid‐beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aβ production and secretion by altering the subcellular distribution of Aβ precursor protein (APP)‐containing lysosomal vesicles. Under oxidative stress, both H4‐APPSwe/Ind and HEK293T‐APPSwe/Ind cell lines showed increased microtubule acetylation and Aβ secretion. Knockdown (KD) of alpha‐tubulin N‐acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as β‐CTF and AICD, but also suppressed Aβ secretion. Oxidative stress promoted the dispersion of LAMP1‐positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein‐mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aβ secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aβ plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress–induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aβ secretion.

Funder

National Research Foundation of Korea

Chung-Ang University

Publisher

Wiley

Subject

Cell Biology,Clinical Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3