Affiliation:
1. Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 85 East Newton Street, Rm. M1007, Boston, MA 02118, U.S.A.
Abstract
The amyloid precursor protein (APP) of Alzheimer's disease is a transmembrane protein that is cleaved within its extracellular domain, liberating a soluble N-terminal fragment (sAPPα). Putative mediators of this process include three members of the ADAM (a disintegrin and metalloprotease) family, ADAM9, ADAM10 and ADAM17/TACE (tumour necrosis factor-α converting enzyme). Tumour necrosis factor-α protease inhibitor (TAPI-1), an inhibitor of ADAMs, reduced constitutive and muscarinic receptor-stimulated sAPPα release in HEK-293 cells stably expressing M3 muscarinic receptors. However, the former was less sensitive to TAPI-1 (IC50 = 8.09μM) than the latter (IC50 = 3.61μM), suggesting that these processes may be mediated by different metalloproteases. Constitutive sAPPα release was increased several-fold in cells transiently transfected with TACE, and this increase was proportional to TACE expression. In contrast, muscarinic-receptor-activated sAPPα release was not altered in TACE transfectants. TACE-dependent constitutive release of co-transfected APP695 was inhibited by TAPI-1 with an IC50 of 0.92μM, a value significantly lower than the IC50s for inhibition of either constitutive or receptor-regulated sAPPα shedding mediated by endogenous secretases. The results indicate that TACE is capable of catalysing constitutive α-secretory cleavage of APP, but it is likely that additional members of the ADAM family mediate endogenous constitutive and receptor-coupled release of sAPPα in HEK-293cells.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献