Author:
Liao Guolong,Tang Jiani,Wang Di,Zuo Haoru,Zhang Qi,Liu Ying,Xiong Haiyun
Abstract
Abstract
Objectives
This research aimed to examine the antitumor mechanisms of selenium nanoparticles (SeNPs) specifically against prostate cancers.
Methods
The antitumor activities of SeNPs against cancer cells were determined via MTT assay. The cell cycle was determined by detecting the DNA content, and apoptosis was determined via annexin V-Fluos staining kit. The microRNA expressions in cancer cells were analyzed via microarray and qRT-PCR. The potential targets of miR-16 were identified via luciferase analysis and mRNA expression determination. miR-16 functions in cancer cells were explored via the transient transfection of miR-16 mimic or inhibitor.
Results
SeNPs were most potent in prostate cancer cells, regardless of whether or not they were androgen-dependent. Furthermore, SeNP stimulation can induce cell cycle arrest and the apoptosis enhancement of prostate cancer cells. Microarray and molecular mechanism studies demonstrated that miR-16 could directly target cyclin D1 and BCL-2 to mediate SeNP apoptosis enhancement. Results show that the serum selenium levels positively correlate with miR-16 expressions, and they correlate with the overall and disease-free survival rates.
Conclusion
These results signify the cytotoxic potential of SeNPs in prostate cancer treatment.
Funder
the Research Project of Traditional Chinese Medicine of Shenzhen Guangming District Health and Family Planning Bureau
Publisher
Springer Science and Business Media LLC
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献