Author:
Imanieh Mohammad Hossein,Amirzadehfard Fatemeh,Zoghi Sina,Sehatpour Faezeh,Jafari Peyman,Hassanipour Hamidreza,Feili Maryam,Mollaie Maryam,Bostanian Pardis,Mehrabi Samrad,Dashtianeh Reyhaneh,Feili Afrooz
Abstract
Abstract
Background
Corona Virus Disease 2019 (COVID-19) presentations range from those similar to the common flu to severe pneumonia resulting in hospitalization with significant morbidity and/or mortality. In this study, we made an attempt to develop a predictive scoring model to improve the early detection of high risk COVID-19 patients by analyzing the clinical features and laboratory data available on admission.
Methods
We retrospectively included 480 consecutive adult patients, aged 21–95, who were admitted to Faghihi Teaching Hospital. Clinical and laboratory features were collected from the medical records and analyzed using multiple logistic regression analysis. The final data analysis was utilized to develop a simple scoring model for the early prediction of mortality in COVID-19 patients. The score given to each associated factor was based on the coefficients of the regression analyses.
Results
A novel mortality risk score (COVID-19 BURDEN) was derived, incorporating risk factors identified in this cohort. CRP (> 73.1 mg/L), O2 saturation variation (greater than 90%, 84–90%, and less than 84%), increased PT (> 16.2 s), diastolic blood pressure (≤ 75 mmHg), BUN (> 23 mg/dL), and raised LDH (> 731 U/L) were the features constituting the scoring system. The patients are triaged to the groups of low- (score < 4) and high-risk (score ≥ 4) groups. The area under the curve, sensitivity, and specificity for predicting mortality in patients with a score of ≥ 4 were 0.831, 78.12%, and 70.95%, respectively.
Conclusions
Using this scoring system in COVID-19 patients, the patients with a higher risk of mortality can be identified which will help to reduce hospital care costs and improve its quality and outcome.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献