Human Bronchial Epithelial Cell Transcriptome Changes in Response to Serum from Patients with Different Status of Inflammation
Author:
Sivaraman Kokilavani, Liu Bin, Martinez-Delgado Beatriz, Held Julia, Büttner Manuela, Illig Thomas, Volland Sonja, Gomez-Mariano Gema, Jedicke Nils, Yevsa Tetyana, Welte Tobias, DeLuca David S., Wrenger SabineORCID, Olejnicka Beata, Janciauskiene SabinaORCID
Abstract
Abstract
Purpose
To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients with different degrees of inflammation.
Methods
Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sampling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients had a WHO-CPS of below 9 (range 1–7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory markers. The culture medium of HBEC was supplemented with 2% of the patient’s serum, and the cells were cultured at 37 °C, 5% CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq.
Results
Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than patients with scores of 9. Principal component analysis based on 500 “core genes” of RNA-seq segregated cells into two subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed.
Conclusion
This simple model could be useful to characterize patient serum and epithelial cell properties.
Funder
Deutsches Zentrum für Lungenforschung Enterprise Europe Network Niedersachsen Polish National Science Centre ExcellGene SA Medizinische Hochschule Hannover (MHH)
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Safiri S, Carson-Chahhoud K, Noori M, Nejadghaderi SA, Sullman MJM, Ahmadian Heris J, Ansarin K, Mansournia MA, Collins GS, Kolahi A-A, Kaufman JS (2022) Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990–2019: results from the Global Burden of Disease Study 2019. BMJ 378:e069679. https://doi.org/10.1136/bmj-2021-069679 2. Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu A, Zhou S, Morrisey EE (2020) Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. elife 9:e53072. https://doi.org/10.7554/eLife.53072 3. Hewitt RJ, Lloyd CM (2021) Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol 21(6):347–362. https://doi.org/10.1038/s41577-020-00477-9 4. Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, Debnath O, Thürmann L, Kurth F, Völker MT, Kazmierski J, Timmermann B, Twardziok S, Schneider S, Machleidt F, Müller-Redetzky H, Maier M, Krannich A, Schmidt S, Balzer F, Liebig J, Loske J, Suttorp N, Eils J, Ishaque N, Liebert UG, von Kalle C, Hocke A, Witzenrath M, Goffinet C, Drosten C, Laudi S, Lehmann I, Conrad C, Sander L-E, Eils R (2020) COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat Biotechnol 38(8):970–979. https://doi.org/10.1038/s41587-020-0602-4 5. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q (2020) Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 130(5):2620–2629. https://doi.org/10.1172/jci137244
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|