Abstract
Abstract
Background
Bacillus cereus is a foodborne pathogen commonly found in nature and food and can cause food spoilage and health issues. Although the prevalence of B. cereus in foods has been reported worldwide, the extent of contamination in edible fungi, which has become increasingly popular as traditional or functional food, is largely unknown. Here we investigated the prevalence, toxin genes’ distribution, antibiotic resistance, and genetic diversity of B. cereus isolated from edible fungi in China.
Results
Six hundred and ninety-nine edible fungi samples were collected across China, with 198 (28.3%) samples found to be contaminated by B. cereus, with an average contamination level of 55.4 most probable number (MPN)/g. Two hundred and forty-seven B. cereus strains were isolated from the contaminated samples. Seven enterotoxin genes and one cereulide synthetase gene were detected. The detection frequencies of all enterotoxin genes were ≥ 80%, whereas the positive rate of the cesB gene in B. cereus was 3%. Most isolates were resistant to penicillins, β-lactam/β-lactamase inhibitor combinations, cephems, and ansamycins, but were susceptible to penems, aminoglycosides, macrolides, ketolide, glycopeptides, quinolones, phenylpropanol, tetracyclines, lincosamides, streptogramins, and nitrofurans. Meanwhile, 99.6% of all isolates displayed multiple antimicrobial resistance to three or more classes of antimicrobials. Using genetic diversity analysis, all isolates were defined in 171 sequence types (STs), of which 83 isolates were assigned to 78 new STs.
Conclusions
This study provides large-scale insight into the prevalence and potential risk of B. cereus in edible fungi in China. Approximately one-third of the samples were contaminated with B. cereus, and almost all isolates showed multiple antimicrobial resistance. Detection frequencies of all seven enterotoxin genes were equal to or more than 80%. These new findings may indicate a need for proper pre-/post-processing of edible fungi to eliminate B. cereus, thereby preventing the potential risk to public health.
Funder
Key-Area of Research and Development Program of Guangdong Province
National Natural Science Foundation of China
Science and Technology Program of Guangdong Province
GDAS’ Special Project of Science and Technology Development
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference73 articles.
1. Wu G, Yuan Q, Wang L, Zhao J, Chu Z, Zhuang M, Zhang Y, Wang K, Xiao P, Liu Y, et al. Epidemiology of foodborne disease outbreaks from 2011 to 2016 in Shandong Province, China. Medicine (Baltimore). 2018;97(45):e13142.
2. Jahan S. Epidemiology of Foodborne Illness. In., vol. 336; 2012.
3. Helms M, Vastrup P, Gerner-Smidt P, Mølbak K. Short and long term mortality associated with foodborne bacterial gastrointestinal infections: registry based study. BMJ. 2003;326(7385):357.
4. Alcorn T, Ouyang Y. China's invisible burden of foodborne illness. Lancet. 2012;379(9818):789–90.
5. Xu J, Zhang J. Analysis of foodborne disease outbreaks in China from 2001 to 2010. Chin Agri Sci Bull. 2012;28:313–6 (in Chinese).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献