Inactivation of the MSTN gene expression changes the composition and function of the gut microbiome in sheep

Author:

Du Chenchen,Zhou Xianhui,Zhang Ke,Huang Shuhong,Wang Xiaolong,Zhou Shiwei,Chen Yulin

Abstract

Abstract Background Myostatin (MSTN) negatively regulates the muscle growth in animals and MSTN deficient sheep have been widely reported previously. The goal of this study was to explore how MSTN inactivation influences their gut microbiota composition and potential functions. Results We compared the slaughter parameters and meat quality of 3 MSTN-edited male sheep and 3 wild-type male sheep, and analyzed the gut microbiome of the MSTN-edited sheep (8 female and 8 male sheep) and wild-type sheep (8 female and 8 male sheep) through metagenomic sequencing. The results showed that the body weight, carcass weight and eye muscle area of MSTN-edited sheep were significantly higher, but there were no significant differences in the meat quality indexes. At the microbial level, the alpha diversity was significantly higher in the MSTN-edited sheep (P < 0.05), and the microbial composition was significantly different by PCoA analysis in the MSTN-edited and wild-type sheep. The abundance of Firmicutes significantly increased and Bacteroidota significantly decreased in the MSTN-edited sheep. At genus level, the abundance of Flavonifractor, Subdoligranulum, Ruthenibacterium, Agathobaculum, Anaerotignum, Oribacterium and Lactobacillus were significantly increased in the MSTN-edited sheep (P < 0.05). Further analysis of functional differences was found that the carotenoid biosynthesis was significantly increased and the peroxisome, apoptosis, ferroptosis, N-glycan biosynthesis, thermogenesis, and adipocytokines pathways were decreased in the MSTN-edited sheep (P < 0.05). Moreover, carbohydrate-active enzymes (CAZymes) results certified the abundance of the GH13_39, GH4, GH137, GH71 and PL17 were upregulated, and the GT41 and CBM20 were downregulated in the MSTN-edited sheep (P < 0.05). Conclusions Our study suggested that MSTN inactivation remarkably influenced the composition and potential function of hindgut microbial communities of the sheep, and significantly promoted growth performance without affecting meat quality.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3