Author:
Duthoo E.,De Reu K.,Leroy F.,Weckx S.,Heyndrickx M.,Rasschaert G.
Abstract
Abstract
Background
As the increased consumption of ready-to-eat meat alternatives is a fairly recent trend, little is known about the composition and dynamics of the microbiota present on such products. Such information is nonetheless valuable in view of spoilage and food safety prevention. Even though refrigeration and modified-atmosphere-packaging (MAP) can extend the shelf-life period, microbial spoilage can still occur in these products. In the present study, the microbiota of a vegetarian alternative to poultry-based charcuterie was investigated during storage, contrasting the use of a culture-dependent method to a culture-independent metagenetic method.
Results
The former revealed that lactic acid bacteria (LAB) were the most abundant microbial group, specifically at the end of the shelf-life period, whereby Latilactobacillus sakei was the most abundant species. Metabarcoding analysis, in contrast, revealed that DNA of Xanthomonas was most prominently present, which likely was an artifact due to the presence of xanthan gum as an ingredient, followed by Streptococcus and Weissella.
Conclusions
Taken together, these results indicated that Lb. sakei was likely the most prominent specific spoilage organisms (SSO) and, additionally, that the use of metagenetic analysis needs to be interpreted with care in this specific type of product. In order to improve the performance of metagenetics in food samples with a high DNA matrix but a low bacterial DNA load, selective depletion techniques for matrix DNA could be explored.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference62 articles.
1. VILT. Belg eet minder rood vlees thuis (in Dutch). VILT. https://vilt.be/nl/nieuws/belg-eet-minder-rood-vlees-thuis. (Accessed 11 December 2020). 2020;:1–2. https://vilt.be/nl/nieuws/belg-eet-minder-rood-vlees-thuis.
2. Witte B, Obloj P, Koktenturk S, Morach B, Brigl M, Rogg J, et al. Food for Thought. The Protein Transformation. 2021.
3. Geeraerts W, De Vuyst L, Leroy F. Ready-to-eat meat alternatives, a study of their associated bacterial communities. Food Biosci. 2020;37:2–7.
4. Doulgeraki AI, Ercolini D, Villani F, Nychas GJE. Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol. 2012;157:130–41. doi:https://doi.org/10.1016/j.ijfoodmicro.2012.05.020.
5. Samelis J. Managing Microbial Spoilage in the Meat Industry. In: de W. Blackburn C, editor. Food Spoilage Microorganisms. 1st edition. Sawston, United Kingdom: Woodhead Publishing Ltd; 2006. p. 213–86. doi:https://doi.org/10.1533/9781845691417.2.213.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献