Abstract
Abstract
Background
The history of gene families—which are equivalent to event-labeled gene trees—can to some extent be reconstructed from empirically estimated evolutionary event-relations containing pairs of orthologous, paralogous or xenologous genes. The question then arises as whether inferred event-labeled gene trees are “biologically feasible” which is the case if one can find a species tree with which the gene tree can be reconciled in a time-consistent way.
Results
In this contribution, we consider event-labeled gene trees that contain speciations, duplications as well as horizontal gene transfer (HGT) and we assume that the species tree is unknown. Although many problems become NP-hard as soon as HGT and time-consistency are involved, we show, in contrast, that the problem of finding a time-consistent species tree for a given event-labeled gene can be solved in polynomial-time. We provide a cubic-time algorithm to decide whether a “time-consistent” species tree for a given event-labeled gene tree exists and, in the affirmative case, to construct the species tree within the same time-complexity.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology
Reference54 articles.
1. Gray GS, Fitch WM. Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance gene from Staphylococcus aureus. Mol Biol Evol. 1983;1:57–66.
2. Fitch WM. Homology: a personal view on some of the problems. Trends Genet. 2000;16:227–31.
3. Hellmuth M. Biologically feasible gene trees, reconciliation maps and informative triples. Algorithms Mol Biol. 2017;12(1):23.
4. Nøjgaard N, Geiß M, Merkle D, Stadler PF, Wieseke N, Hellmuth M. Time-consistent reconciliation maps and forbidden time travel. Algorithms Mol Biol. 2018;13(1):2.
5. Geiß M, Anders J, Stadler PF, Wieseke N, Hellmuth M. Reconstructing gene trees from Fitch’s xenology relation. J Math Biol. 2018;77(5):1459–91.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献