Relative timing information and orthology in evolutionary scenarios

Author:

Schaller David,Hartmann Tom,Lafond Manuel,Stadler Peter F.,Wieseke Nicolas,Hellmuth Marc

Abstract

Abstract Background Evolutionary scenarios describing the evolution of a family of genes within a collection of species comprise the mapping of the vertices of a gene tree T to vertices and edges of a species tree S. The relative timing of the last common ancestors of two extant genes (leaves of T) and the last common ancestors of the two species (leaves of S) in which they reside is indicative of horizontal gene transfers (HGT) and ancient duplications. Orthologous gene pairs, on the other hand, require that their last common ancestors coincides with a corresponding speciation event. The relative timing information of gene and species divergences is captured by three colored graphs that have the extant genes as vertices and the species in which the genes are found as vertex colors: the equal-divergence-time (EDT) graph, the later-divergence-time (LDT) graph and the prior-divergence-time (PDT) graph, which together form an edge partition of the complete graph. Results Here we give a complete characterization in terms of informative and forbidden triples that can be read off the three graphs and provide a polynomial time algorithm for constructing an evolutionary scenario that explains the graphs, provided such a scenario exists. While both LDT and PDT graphs are cographs, this is not true for the EDT graph in general. We show that every EDT graph is perfect. While the information about LDT and PDT graphs is necessary to recognize EDT graphs in polynomial-time for general scenarios, this extra information can be dropped in the HGT-free case. However, recognition of EDT graphs without knowledge of putative LDT and PDT graphs is NP-complete for general scenarios. In contrast, PDT graphs can be recognized in polynomial-time. We finally connect the EDT graph to the alternative definitions of orthology that have been proposed for scenarios with horizontal gene transfer. With one exception, the corresponding graphs are shown to be colored cographs.

Funder

Natural Sciences and Engineering Research Council of Canada

Deutsche Forschungsgemeinschaft

Stockholm University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3