Dietary protein levels changed the hardness of muscle by acting on muscle fiber growth and the metabolism of collagen in sub-adult grass carp (Ctenopharyngodon idella)

Author:

Dong Min,Zhang Lu,Wu Pei,Feng Lin,Jiang Weidan,Liu Yang,Kuang Shengyao,Li Shuwei,Mi Haifeng,Tang Ling,Zhou Xiaoqiu

Abstract

Abstract Background Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish. As a necessary nutrient for fish growth, protein accounts for the highest proportion in the fish diet and is expensive. Although our team found that the effect of protein on the muscle hardness of grass carp was probably related to an increased collagen content, the mechanism for this effect has not been deeply explored. Moreover, few studies have explored the protein requirements of sub-adult grass crap (Ctenopharyngodon idella). Therefore, the effects of different dietary protein levels on the growth performance, nutritional value, muscle hardness, muscle fiber growth, collagen metabolism and related molecule expression in grass carp were investigated. Methods A total of 450 healthy grass carp (721.16 ± 1.98 g) were selected and assigned randomly to six experimental groups with three replicates each (n = 25/replicate), and were fed six diets with 15.91%, 19.39%, 22.10%, 25.59%, 28.53% and 31.42% protein for 60 d. Results Appropriate levels of dietary protein increased the feed intake, percentage weight gain, specific growth rate, body composition, unsaturated fatty acid content in muscle, partial free amino acid content in muscle, and muscle hardness of grass carp. These protein levels also increased the muscle fiber density, the frequency of new muscle fibers, the contents of collagen and IGF-1, and the enzyme activities of prolyl 4-hydroxylases and lysyloxidase, and decreased the activity of matrix metalloproteinase-2. At the molecular level, the optimal dietary protein increased collagen type I α1 (Colα1), Colα2, PI3K, Akt, S6K1, La ribonucleoprotein domain family member 6a (LARP6a), TGF-β1, Smad2, Smad4, Smad3, tissue inhibitor of metalloproteinase-2, MyoD, Myf5, MyoG and MyHC relative mRNA levels. The levels of the myostatin-1 and myostatin-2 genes were downregulated, and the protein expression levels of p-Smad2, Smad2, Smad4, p-Akt, Akt, LARP6 and Smad3 were increased. Conclusions The appropriate levels of dietary protein promoted the growth of sub-adult grass carp and improved muscle hardness by promoting the growth of muscle fibers, improving collagen synthesis and depressing collagen degradation. In addition, the dietary protein requirements of sub-adult grass carp were 26.21% and 24.85% according to the quadratic regression analysis of growth performance (SGR) and the muscle hardness (collagen content), respectively.

Funder

National Key R&D Program of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Natural Science Foundation of China

the Young Top-Notch Talent Support Program of National Ten-Thousand Talents Program

Earmarked Fund for China Agriculture Research System

Outstanding Talents and Innovative Team of Agricultural Scientific Research

Sichuan Science and Technology Program

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3