Author:
Kwak Min-Jin,Park Min-Young,Choi Yong-Soon,Cho Junghwan,Pathiraja Duleepa,Kim Jonggun,Lee Hanbae,Choi In-Geol,Whang Kwang-Youn
Abstract
Abstract
Background
Gut is a crucial organ for the host’s defense system due to its filtering action of the intestinal membrane from hazardous foreign substances. One strategy to strengthen the gut epithelial barrier function is to upregulate beneficial microflora populations and their metabolites. Sophorolipid (SPL), which is a glycolipid bio-surfactant, could increase beneficial microflora and decrease pathogenic bacteria in the gastrointestinal tract. Therefore, herein, we conducted an experiment with broiler chickens to investigate the fortifying effects of SPL on the host’s gut defense system by modulating the microbiota population.
Methods
A total of 540 1-day-old chicks (Ross 308) were used, and they were immediately allotted into three treatment groups (6 replications with 30 chicks/pen) according to their initial body weight. The dietary treatments consisted of CON (basal diet), BAM (10 mg/kg bambermycin), and SPL (10 mg/kg SPL). During the experiment, birds freely accessed feed and water, and body weight and feed intake were measured at the end of each phase. On d 35, birds (one bird/pen) were sacrificed to collect jejunum and cecum samples.
Results
Dietary SPL and BAM supplementation significantly accelerated birds’ growth and also significantly improved feed efficiency compared to CON. Intestinal microbial community was significantly separated by dietary SPL supplementation from that of CON, and dietary SPL supplementation significantly increased Lactobacillus spp. and Akkermansia muciniphila. Moreover, birds fed with dietary SPL also showed the highest concentration of cecal butyrate among all treatment groups. Gut morphological analysis showed that dietary SPL significantly increased villus height, ratio of villus height to crypt depth, goblet cell numbers, and the gene expression levels of claudin-1 and mucin 2. Additionally, dietary SPL significantly decreased the mRNA expression level of pro-inflammatory cytokine, interleukin-6, and increased that of anti-inflammatory cytokine, interleukin-10, compared to other treatments.
Conclusions
Dietary SPL increases the beneficial bacterial population and butyrate concentration, which leads to a strengthened gut barrier function. In addition, the intestinal inflammation was also downregulated by dietary SPL supplementation.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Biochemistry,Food Science,Biotechnology
Reference39 articles.
1. Danzeisen JL, Kim HB, Isaacson RE, Tu ZJ, Johnson TJ. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS One. 2011;6(11):e27949. https://doi.org/10.1371/journal.pone.0027949.
2. Bates J, Jordens JZ, Griffiths DT. Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J Antibicrob Chemother. 1994;34(4):507–14. https://doi.org/10.1093/jac/34.4.507.
3. Munk P, Knudsen BE, Lukjacenko O, Duarte ASR, Luiken RE, Van Gompel L, et al. Abundance and diversity of the fecal resistome in slaughter pigs and broilers in nine European countries. Nature. 2017;3:898–908.
4. Wang JP, Lee JH, Yoo JS, Cho JH, Kim HJ, Kim IH. Effects of phenyllactic acid on growth performance, intestinal microbiota, relative organ weight, blood characteristics, and meat quality of broiler chicks. Poult Sci. 2010;89(7):1549–55. https://doi.org/10.3382/ps.2009-00235.
5. Roy A, Haldar S, Mondal S, Ghosh TP. Effects of supplemental exogenous emulsifier on performance, nutrient metabolism, and serum lipid profile in broiler chickens. Vet Med Int. 2010;11:262604.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献