25-hydroxycholecalciferol reverses heat induced alterations in bone quality in finisher broilers associated with effects on intestinal integrity and inflammation

Author:

Zhang Huaiyong,Majdeddin Maryam,Gaublomme Djoere,Taminiau Bernard,Boone Matthieu,Elewaut Dirk,Daube George,Josipovic Iván,Zhang Keying,Michiels JorisORCID

Abstract

Abstract Background Alterations in ambient temperature have been associated with multiple detrimental effects on broilers such as intestinal barrier disruption and dysbiosis resulting in systemic inflammation. Inflammation and 25-hydroxycholecalciferol (25-OH-D3) have shown to play a negative and positive role, respectively, in the regulation of bone mass. Hence the potential of 25-OH-D3 in alleviating heat induced bone alterations and its mechanisms was studied. Results Heat stress (HS) directly induced a decrease in tibia material properties and bone mass, as demonstrated by lower mineral content, and HS caused a notable increase in intestinal permeability. Treatment with dietary 25-OH-D3 reversed the HS-induced bone loss and barrier leak. Broilers suffering from HS exhibited dysbiosis and increased expression of inflammatory cytokines in the ileum and bone marrow, as well as increased osteoclast number and activity. The changes were prevented by dietary 25-OH-D3 administration. Specifically, dietary 25-OH-D3 addition decreased abundance of B- and T-cells in blood, and the expression of inflammatory cytokines, especially TNF-α, in both the ileum and bone marrow, but did not alter the diversity and population or composition of major bacterial phyla. With regard to bone remodeling, dietary 25-OH-D3 supplementation was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen reflecting bone resorption and a concomitant decrement in osteoclast-specific marker genes expression (e.g. cathepsin K), whereas it did not apparently change serum bone formation markers during HS. Conclusions These data underscore the damage of HS to intestinal integrity and bone health, as well as that dietary 25-OH-D3 supplementation was identified as a potential therapy for preventing these adverse effects.

Funder

Chinese Government Scholarship

Bijzonder Onderzoeksfonds

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3