The effect of embedded structures on cognitive load for novice learners during block-based code comprehension

Author:

Hao Xiaoxin,Xu Zhiyi,Guo Mingyue,Hu Yuzheng,Geng FengjiORCID

Abstract

Abstract Background Coding has become an integral part of STEM education. However, novice learners face difficulties in processing codes within embedded structures (also termed nested structures). This study aimed to investigate the cognitive mechanism underlying the processing of embedded coding structures based on hierarchical complexity theory, which suggests that more complex hierarchies are involved in embedded versus sequential coding structures. Hierarchical processing is expected to place a great load on the working memory system to maintain, update, and manipulate information. We therefore examined the difference in cognitive load induced by embedded versus sequential structures, and the relations between the difference in cognitive load and working memory capacity. Results The results of Experiment 1 did not fully support our hypotheses, possibly due to the unexpected use of cognitive strategies and the way stimuli were presented. With these factors well controlled, a new paradigm was designed in Experiment 2. Results indicate that the cognitive load, as measured by the accuracy and response times of a code comprehension task, was greater in embedded versus sequential conditions. Additionally, the extra cognitive load induced by embedded coding structures was significantly related to working memory capacity. Conclusions The findings of these analyses suggest that processing embedded coding structures exerts great demands on the working memory system to maintain and manipulate hierarchical information. It is therefore important to provide scaffolding strategies to help novice learners process codes across different hierarchical levels within embedded coding structures.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

The MOE (Ministry of Education in China) Project of Humanities and Social Sciences

Zhejiang University Education Foundation Global Partnership Fund

Publisher

Springer Science and Business Media LLC

Subject

Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3