Abstract
Abstract
Background
There is anecdotal evidence that many elementary teachers integrate mathematics lessons and art activities by having students first make colorful, rich material that is subsequently used in an instructional activity. However, it is unclear whether such activities effectively promote learning and transfer of mathematical concepts. The goal of the present research was to examine the use and effectiveness of such “math-and-art” activities on children’s ability to acquire basic fraction knowledge. We report the results of a survey of practicing elementary school teachers in the United States, their use of activities involving physical material, and the resources they use for ideas to supplement the standard curriculum. Two experiments examined first-grade students’ learning, transfer, and recognition of fraction knowledge from rich, contextualized material versus simple, generic material.
Results
The survey results confirm that many U.S. teachers use math-and-art activities and are often inspired by informal sources, such as Pinterest and YouTube. Experiment 1 examined the effectiveness of colorful, contextualized student-constructed material (paper pizzas) versus simple, pre-made material (monochromatic paper circles) in an instructional activity on fractions. Students who used the pre-made circles scored higher than those who used the student-made pizzas on pre-instruction tests of basic fraction knowledge, immediate tests of learning, and delayed tests of transfer. Experiment 2 tested students’ ability to spontaneously write fractions to describe proportions of pizzas and circles. Students who answered generic circle questions first were markedly more accurate than those who answered pizza questions first.
Conclusions
These findings suggest that rich, contextualized representations, including those made by the student, can hinder students’ learning and transfer of mathematical concepts. We are not suggesting that teachers never integrate mathematics and colorful, contextualized material, and activities. We do suggest that elementary students’ mathematics learning can benefit when initial instruction involves simple, generic, pre-made material and opportunities for students to make and use colorful, contextualized representations come later.
Funder
Institute of Education Sciences
Publisher
Springer Science and Business Media LLC
Reference94 articles.
1. Alibali, M. W., & Sidney, P. G. (2015). Variability in the natural number bias: who, when, how, and why. Learning and Instruction, 37, 56–61 https://doi.org/10.1016/j.learninstruc.2015.01.003.
2. Andrews, G., & Halford, G. S. (2002). A cognitive complexity metric applied to cognitive development. Cognitive Psychology, 45, 153–219 https://doi.org/10.1016/S0010-0285(02)00002-6.
3. Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113, 447–455 https://doi.org/10.1016/j.jecp.2012.06.004.
4. Ball, D. L. (1992). Magical hopes: Manipulatives and the reform of math education. American Educator: The Professional Journal of the American Federation of Teachers, 16(2), 14–18 46–47.
5. Beckman, S. (2018). Mathematics for elementary teachers with activities (5th ed.). New York: Pearson.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献