Abstract
Abstract
Background
This study focuses on probing preservice technology teachers’ cognitive structures and how they construct engineering design in technology-learning activities and explores the effects of infusing an engineering design process into science, technology, engineering, and mathematics (STEM) project-based learning to develop preservice technology teachers’ cognitive structures for engineering design thinking.
Results
The study employed a quasi-experimental design, and twenty-eight preservice technology teachers participated in the teaching experiment. The flow-map method and metalistening technique were utilized to enable preservice technology teachers to create flow maps of engineering design, and a chi-square test was employed to analyze the data. The results suggest that (1) applying the engineering design process to STEM project-based learning is beneficial for developing preservice technology teachers’ schema of design thinking, especially with respect to clarifying the problem, generating ideas, modeling, and feasibility analysis, and (2) it is important to encourage teachers to further explore the systematic concepts of engineering design thinking and expand their abilities by merging the engineering design process into STEM project-based learning.
Conclusions
The findings of this study provide initial evidence on the effects of infusing the engineering design process into STEM project-based learning to develop preservice technology teachers’ engineering design thinking. However, further work should focus on exploring how to overcome the weaknesses of preservice technology teachers’ engineering design thinking by adding a few elements of engineering design thinking pedagogy, e.g., designing learning activities that are relevant to real life.
Funder
Ministry of Science and Technology, Taiwan
Ministry of Education
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Anderson, O. R., & Demetrius, O. J. (1993). A flow-map method of representing cognitive structure based on respondents’ narrative using science content. Journal of Research in Science Teaching, 30(8), 953–969.
2. Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359–379.
3. Atman, C. J., Cardella, M. E., Turns, J., & Adams, R. (2005). Comparing freshman and senior engineering design processes: An in-depth follow-up study. Design Studies, 26, 325–357.
4. Baumann, N., & Kuhl, J. (2002). Intuition, affect, and personality: Unconscious coherence judgments and self-regulation of negative affect. Journal of Personality and Social Psychology, 83(5), 1213–1223.
5. Borgford-Parnell, J., Deibel, K., & Atman, C. J. (2010). From engineering design research to engineering pedagogy: Bringing research results directly to the students. International Journal of Engineering Education, 26(4), 748–759.
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献