Abstract
AbstractRobotic grippers that gently handle objects of various shapes are required for various applications these days. Conventional finger-shaped grippers are multifunctional and can grip various objects; however, grasping an item without slippage requires planning the positioning of the fingers at appropriate locations on the item. Hence, a ring-shaped soft gripper that coils itself around objects like a rubber band is suggested in this paper. The proposed gripper comprises a soft tube containing laminated sponges interleaved with plastic sheets. Evacuation of the air within the sponges shrinks them and decreases the diameter of the ring, thereby allowing the gripper to firmly hold objects. The gripper is therefore flexible enough to coil around objects of various shapes without gaps. Furthermore, the rigidity of the compressed sponges inside the gripper prevents wobbling of the gripped objects. The air within the gripper can be used to adjust the gripping force. The minimum diameter of the gripper after evacuating the air within the sponges is approximately one-fourth of the original diameter. Thus, the proposed gripper is expected to be used in various applications as it automatically conforms to the different shapes while simply gripping objects gently and securely.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modelling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献