Abstract
AbstractThis paper proposes a locomotion approach of leg-wheel robot utilizing passive wheel attached to the foot of bipedal robot. The key feature of this approach is bipedal mobility without swing leg. This mobility contributes the stability based on expansion of support polygon during locomotion, the robustness for obstacles and stopping to prevent fall, and the adaptability by prevention of body swing sideways. To achieve these, we propose the stability margin maximization to optimize center of gravity projection for support polygon and the fall prevention functions for real environment that is a difficult situation to prevent unexpected fall by the only planning. Finally, we apply the proposed methods to leg-wheel phases through locomotion and verify the contribution by experiments using real bipedal robot.
Funder
Japan Society for the Promotion of Science
Industry-Academia Collaboration
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献