Gene coexpression networks reveal molecular interactions underlying cichlid jaw modularity

Author:

Singh PoojaORCID,Ahi Ehsan Pashay,Sturmbauer Christian

Abstract

AbstractBackgroundThe oral and pharyngeal jaw of cichlid fishes are a classic example of evolutionary modularity as their functional decoupling boosted trophic diversification and contributed to the success of cichlid adaptive radiations. Most studies until now have focused on the functional, morphological, or genetic aspects of cichlid jaw modularity. Here we extend this concept to include transcriptional modularity by sequencing whole transcriptomes of the two jaws and comparing their gene coexpression networks.ResultsWe show that transcriptional decoupling of gene expression underlies the functional decoupling of cichlid oral and pharyngeal jaw apparatus and the two units are evolving independently in recently diverged cichlid species from Lake Tanganyika. Oral and pharyngeal jaw coexpression networks reflect the common origin of the jaw regulatory program as there is high preservation of gene coexpression modules between the two sets of jaws. However, there is substantial rewiring of genetic architecture within those modules. We define a global jaw coexpression network and highlight jaw-specific and species-specific modules within it. Furthermore, we annotate a comprehensive in silico gene regulatory network linking the Wnt and AHR signalling pathways to jaw morphogenesis and response to environmental cues, respectively. Components of these pathways are significantly differentially expressed between the oral and pharyngeal jaw apparatus.ConclusionThis study describes the concerted expression of many genes in cichlid oral and pharyngeal jaw apparatus at the onset of the independent life of cichlid fishes. Our findings suggest that – on the basis of an ancestral gill arch network—transcriptional rewiring may have driven the modular evolution of the oral and pharyngeal jaws, highlighting the evolutionary significance of gene network reuse. The gene coexpression and in silico regulatory networks presented here are intended as resource for future studies on the genetics of vertebrate jaw morphogenesis and trophic adaptation.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference128 articles.

1. Olson E, Miller R. Morphological integration. Chicago: University of Chicago Press; 1958.

2. Mayr E. The growth of biological thought: diversity, evolution, and inheritance. Cambridge: Harvard University Press; 1982.

3. Wagner GP. Homologues, natural kinds and the evolution of modularity. Am J Zool. 1996;36:36–43.

4. Pigliucci M, Preston K. Phenotypic integration: studying the ecology and evolution of complex phenotypes. New York: Oxford University Press; 2004.

5. Wagner GP, Pavlicev M, Cheverud JM. The road to modularity. Nat Rev Genet. 2007;8:921–31.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3