Developmental tinkering of gene regulation facilitated super rapid adaptive radiation

Author:

Duenser AnnaORCID,Singh PoojaORCID,Ahi Ehsan PashayORCID,Durdevic MarijaORCID,Schaeffer Sylvia,Gessl Wolfgang,Seehausen OleORCID,Sturmbauer ChristianORCID

Abstract

AbstractDevelopmental shifts in gene regulation underlying key innovations remain largely uncharacterised at short evolutionary timescales. Here we investigate the gene expression and alternative splicing landscape of trophic innovations in the fastest vertebrate adaptive radiation: cichlid fishes from Lake Victoria. Using whole-transcriptomes of the oral and pharyngeal jaws from two life stages of species adapted to divergent trophic niches, we show that gene and isoform expression were fine-tuned during development to generate specialised species-specific eco-morphologies in adults. This is a striking contrast to mammals where tissue-specific gene expression is conserved across species even after 90 million years of evolution and suggests that gene regulatory programs have evolved rapidly in Lake Victoria cichlids. We show that gene expression during development is highly modular and this developmental modularity may have facilitated trophic diversification. Furthermore, we discovered that retrotransposon mediated exonisation of a craniofacial development gene, KAZNB, has contributed to the evolution of a novel trophic niche. This advocates for the importance of exonisation and the splicing machinery in rapidly expanding the coding capacity of the genome <15,000 years. We also identified a major transcription factor of craniofacial remodelling in Darwin’s finches, ALX3, to have contributed to jaw divergence in Lake Victoria cichlids. Overall, our results suggest that developmental tinkering of gene regulation is a major facilitator of key innovations and diversification during adaptive radiation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3