Conserved Molecular Players Involved in Human Nose Morphogenesis Underlie Evolution of the Exaggerated Snout Phenotype in Cichlids

Author:

Duenser Anna1ORCID,Singh Pooja123,Lecaudey Laurène Alicia145,Sturmbauer Christian1ORCID,Albertson R Craig6,Gessl Wolfgang1,Ahi Ehsan Pashay17

Affiliation:

1. Institute of Biology, University of Graz , Graz , Austria

2. Aquatic Ecology Division, Institute of Ecology and Evolution, University of Bern , Bern , Switzerland

3. Swiss Federal Institute of Aquatic Science and Technology (EAWAG) , Kastanienbaum , Switzerland

4. Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology , Trondheim , Norway

5. SINTEF Ocean, Aquaculture Department , Trondheim, Trøndelag , Norway

6. Department of Biology, University of Massachusetts , Amherst, Massachusetts , USA

7. Organismal and Evolutionary Biology Research Programme, University of Helsinki , Helsinki , Finland

Abstract

AbstractInstances of repeated evolution of novel phenotypes can shed light on the conserved molecular mechanisms underlying morphological diversity. A rare example of an exaggerated soft tissue phenotype is the formation of a snout flap in fishes. This tissue flap develops from the upper lip and has evolved in one cichlid genus from Lake Malawi and one genus from Lake Tanganyika. To investigate the molecular basis of snout flap convergence, we used mRNA sequencing to compare two species with snout flap to their close relatives without snout flaps from each lake. Our analysis identified 201 genes that were repeatedly differentially expressed between species with and without snout flap in both lakes, suggesting shared pathways, even though the flaps serve different functions. Shared expressed genes are involved in proline and hydroxyproline metabolism, which have been linked to human skin and facial deformities. Additionally, we found enrichment for transcription factor binding sites at upstream regulatory sequences of differentially expressed genes. Among the enriched transcription factors were members of the FOX transcription factor family, especially foxf1 and foxa2, which showed an increased expression in the flapped snout. Both of these factors are linked to nose morphogenesis in mammals. We also found ap4 (tfap4), a transcription factor showing reduced expression in the flapped snout with an unknown role in craniofacial soft tissue development. As genes involved in cichlid snout flap development are associated with human midline facial dysmorphologies, our findings hint at the conservation of genes involved in midline patterning across distant evolutionary lineages of vertebrates, although further functional studies are required to confirm this.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3