Crustal deformation detection capability of the GNSS-A seafloor geodetic observation array (SGO-A), provided by Japan Coast Guard

Author:

Yokota YusukeORCID,Ishikawa Tadashi,Watanabe Shun-ichi,Nakamura Yuto

Abstract

AbstractThe GNSS-A technique is an observation method that can detect seafloor crustal deformations with centimeter-level positioning accuracy. The GNSS-A seafloor geodetic observation array operated by the Japan Coast Guard (SGO-A) has been constructed near the Japanese Islands along the Nankai Trough and the Japan Trench. This observation array has detected several earthquakes’ displacements and episodic slow crustal deformation. To compare the detection results of SGO-A with other observation networks and expand the SGO-A coverage area, it is necessary to correctly understand its detection capability. In this paper, numerical simulations and statistical verifications were used to assess the capabilities of the present GNSS-A system using a manned vessel (observation frequency: 4–6 times/year, positioning accuracy: standard deviation = 1.5 cm) to detect (1) secular deformation only, (2) a transient slip event only and (3) secular deformation and a transient event together. We verified these results with appropriate thresholds and found the following features: When it is known that there is no transient event, the 95% confidence level (CL) for the estimation of secular crustal deformation rate with 4-year observation is about 0.5–0.8 cm/year; when the deformation rate is known, a signal of about 3.0 cm can be detected by observations of about 4 times before and after the transient event. When the deformation rate and the transient event are detected together, to keep the false positive low (about 0.05), the false negative becomes high (about 0.7–0.2 for detecting a signal of 4.5–6.0 cm). The determined rate and event variations are approximately 1.8 cm/year (95%CL) and 1.5 cm (standard deviation), respectively. We also examined the detection capability for higher observation frequency and positioning accuracy, to examine how the detection capability improves by technological advancements in the future. Additionally, we calculated the spatial range of event detectability using the determined values of detection sensitivity. Obtained results show that each seafloor site can detect a slip event of < 1.0 m scale within about 30 km radius, and approximately one-third of the subseafloor slip event over 100 km from land along the Nankai Trough can only be detected by SGO-A.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3