Author:
Yokota Yusuke,Kaneda Masata,Hashimoto Takenori,Yamaura Shusaku,Kouno Kenji,Hirakawa Yoshiaki
Abstract
AbstractThe Global Navigation Satellite System-Acoustic ranging combination technique (GNSS-A) is the only geodetic observation method that can precisely detect absolute horizontal and vertical seafloor crustal deformations at the centimetre scale. GNSS-A has detected many geophysical phenomena and is expected to make great contributions to earthquake disaster prevention science and geodesy. However, current observation methods that use vessels and buoys suffer from high cost or poor real-time performance, which leads to low observation frequency and delays in obtaining and transmitting disaster prevention information. To overcome these problems, a new sea surface platform is needed. Here, we present an unmanned aerial vehicle (UAV) system developed for GNSS-A surveys capable of landing on the sea surface. Submetre-level seafloor positioning is achieved based on real-time single-frequency GNSS data acquired over an actual site. UAV-based GNSS-A allows high-frequency, near real-time deployment, and low-cost seafloor geodetic observations. This system could be deployed to acquire high-frequency observations with centimetre-scale accuracies when using dual-frequency GNSS.
Funder
Earthquake Res.Inst., the University of Tokyo, Joint Research program
University of Tokyo Excellent Young Researcher project
SECOM Science and Technology Foundation
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献