Enhanced GNSS-acoustic positioning method implementing with constraints on underwater sound speed structure

Author:

Tomita Fumiaki1ORCID

Affiliation:

1. Tohoku University: Tohoku Daigaku

Abstract

Abstract

It is important to appropriately model underwater sound speed structures to detect seafloor displacements accurately using GNSS-acoustic seafloor geodetic observations. In recent years, various sea surface platforms (e.g., wave gliders) have been developed for GNSS-acoustic observations. Sub-mesoscale oceanic phenomena can be detected by simultaneously employing multiple sea surface platforms. However, the use of a single sea surface platform with slow navigation speeds may degrade the modeling accuracy of underwater sound speed structures, even when compared to conventional ship-based observations. Therefore, the development of a GNSS-acoustic positioning technique that expresses a complex underwater sound speed structure and simultaneously provides constraints on sound speed parameters, if necessary. This study arranges the observation equation by considering multiple-layered sound speed gradients and develops a GNSS-acoustic positioning scheme using a Bayesian framework. The performance of the proposed GNSS-acoustic positioning method was investigated using synthetic datasets. The proposed method successfully modeled a complex underwater sound speed structure (e.g., temporal variations in sound speed gradients) using a dataset collected by dual sea surface platforms, which is highly sensitive to the underwater sound speed structure. It also provides robust solutions, even for a dataset with low sensitivity, by appropriately introducing constraints on the sound speed parameters. Moreover, the proposed method was applicable to an actual observational dataset, and it was confirmed that the GNSS-acoustic positioning method under special conditions (assumption of a temporally constant single-layered sound speed gradient) in a previous study can be reproduced by the constraints in the proposed method. Thus, the proposed method enabled us to flexibly model the underwater sound speed structure and accurately detect seafloor displacements for various types of observation datasets. The proposed method was implemented in the open-source GNSS-acoustic positioning software "SeaGap.”

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3