GPS/Acoustic seafloor geodetic observation: method of data analysis and its application

Author:

Fujita Masayuki,Ishikawa Tadashi,Mochizuki Masashi,Sato Mariko,Toyama Shin-ichi,Katayama Masato,Kawai Koji,Matsumoto Yoshihiro,Yabuki Tetsuichiro,Asada Akira,Colombo Oscar L.

Abstract

Abstract We have been developing a system for detecting seafloor crustal movement by combining kinematic GPS and acoustic ranging techniques. A linear inversion method is adopted to determine the position of seafloor stations from coordinates of a moving survey vessel and measured travel times of acoustic waves in seawater. The positioning accuracy is substantially improved by estimating the temporal variation of the acoustic velocity structure. We apply our method to the ranging data acquired at the seafloor reference point, MYGI, located off Miyagi Prefecture, in northeast Japan, where a huge earthquake is expected to occur in the near future. A time series of horizontal coordinates of MYGI obtained from seven campaign observations for the period 2002–2005 exhibits a linear trend with a scattering rms of about 2 cm. A linear fit to the time series gives an intraplate crustal velocity of more than several centimeters per year towards the WNW, which implies strong interplate coupling around this region. The precision of each campaign solution was examined at MYGI and other seafloor reference points along the Nankai Trough through comparison of independent one-day subset solutions within the campaign. The resultant repeatability looks to be well-correlated with the temporal and spatial stability of the acoustic velocity structure in the seawater depending on the region as well as the season.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Reference40 articles.

1. Altamimi, Z., P. Sillard, and C. Boucher, ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications, J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561, 2002.

2. Asada, A. and T. Yabuki, Centimeter-level positioning on the seafloor, Proc. of the Japan Academy, 77, Ser. B, 7–12, 2001.

3. Chadwell, C. D., Shipboard towers for Global Positioning System antennas, Ocean Engineering, 30, 1467–1487, 2003.

4. Chadwell, C. D., F. N. Spiess, J. A. Hildebrand, L. E. Young, G. H. Purcell, and H. Dragert, Deep-sea geodesy: Monitoring the ocean floor, GPS World, 9, 44–55, 1998.

5. Chadwell, C. D., F. N. Spiess, J. A. Hildebrand, and H. Dragert, Seafloor geodetic evidence of episodic spreading 25 km east of the Juan de Fuca Ridge, EOS. Trans. AGU, 83, Fall Meet. Suppl., Abst., T22A–1130, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3