Vegetation, fuels, and fire-behavior responses to linear fuel-break treatments in and around burned sagebrush steppe: are we breaking the grass-fire cycle?

Author:

Germino Matthew J.ORCID,Price Samuel “Jake”,Prichard Susan J.

Abstract

Abstract Background Linear fuel breaks are being implemented to moderate fire behavior and improve wildfire containment in semiarid landscapes such as the sagebrush steppe of North America, where extensive losses in perennial vegetation and ecosystem functioning are resulting from invasion by exotic annual grasses (EAGs) that foster large and recurrent wildfires. However, fuel-break construction can also pose EAG invasion risks, which must be weighed against the intended fire-moderation benefits of the treatments. We investigated how shrub reductions (mowing, cutting), pre-emergent EAG-herbicides, and/or drill seedings of fire-resistant perennial bunchgrasses (PBGs) recently applied to create a large fuel-break system affected native and exotic plant abundances and their associated fuel loading and predicted fire behavior. Results In heavily EAG-invaded areas, herbicides reduced EAG and total herbaceous cover without affecting PBGs for 2–3 years and reduced predicted fire behavior for 1 year (from the Fuel Characteristic Classification System). However, surviving post-herbicide EAG cover was still > 30%, which was sufficient fuel to exceed the conventional 1.2-m-flame length (FL) threshold for attempting wildfire suppression with hand tools. In less invaded shrubland, shrub reduction treatments largely reduced shrub cover and height by ~ half without increasing EAGs, but then redistributed the wood to ground level and increased total herbaceous cover. Herbicides and/or drill seeding after shrub reductions did not affect EAG cover, although drill seedings increased PBG cover and exotic forbs (e.g., Russian thistle). Fire behavior was predicted to be moderated in only one of the many yearly observations of the various shrub-reduction treatment combinations. Over all treatments and years, FLs were predicted to exceed 1.2 m in 13% of simulations under average (11 km h−1) or high (47 km h−1) wind speed conditions and exceed the 3.4-m threshold for uncontrollable fire in 11% of simulations under high-wind speeds only. Conclusions Predicted fire-moderation benefits over the first 4 years of fuel break implementation were modest and variable, but, generally, increases in EAGs and their associated fire risks were not observed. Nonetheless, ancillary evidence from shrublands would suggest that treatment-induced shifts from shrub to herbaceous fuel dominance are expected to improve conditions for active fire suppression in ways not readily represented in available fire models.

Funder

U.S. Fish and Wildlife Service

U.S. Bureau of Land Management

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3