Vegetative Community Response to Landscape-Scale Post-fire Herbicide (Imazapic) Application

Author:

Applestein Cara,Germino Matthew J.ORCID,Fisk Matthew R.

Abstract

AbstractDisturbances such as wildfire create time-sensitive windows of opportunity for invasive plant treatment, and the timing of herbicide application relative to the time course of plant community development following fire can strongly influence herbicide effectiveness. We evaluated the effect of herbicide (imazapic) applied in the first winter or second fall after the 113,000 ha Soda wildfire on the target exotic annual grasses and also key non-target components of the plant community. We measured responses of exotic and native species cover, species diversity, and occurrence frequency of shrubs and forbs seeded before (1 to 2 or 9 to 10 mo) herbicide application. Additionally, we asked whether landscape factors, including topography, species richness, and/or soil characteristics, influenced the effectiveness of imazapic. Cover of exotic annual grass cover, but not of deep-rooted perennial bunchgrass, was less where imazapic had been applied, whereas more variability was evident in the response of Sandberg bluegrass (Poa secunda J. Presl) and seeded shrubs and forbs. Regression-tree analysis of the subset of plots measured both before and after the second fall application revealed greater reductions of exotic annual grass cover in places where their cover was <42% before spraying. Otherwise, imazapic effects did not vary with the landscape factors we analyzed.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Reference52 articles.

1. Cheatgrass (Bromus tectorum L) dominance in the Great Basin Desert

2. Revegetation of Medusahead-Invaded Sagebrush Steppe

3. EARLY EMERGENCE ENHANCES PLANT FITNESS: A PHYLOGENETICALLY CONTROLLED META-ANALYSIS

4. Native Grass and Forb Response to Pre-Emergent Application of Imazapic and Imazapyr

5. Therneau T , Atkinson B , Ripley B (2017) rpart: Recursive Partitioning and Regression Trees. R Package v. 4.1-11. https://CRAN.R-project.org/package=rpart. Accessed: November 2, 2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3