Nontarget effects of pre‐emergent herbicides and a bioherbicide on soil resources, processes, and communities

Author:

Lazarus Brynne E.1ORCID,Germino Matthew J.1ORCID,de Graaff Marie‐Anne2ORCID

Affiliation:

1. U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, Snake River Field Station Boise ID U.S.A.

2. Department of Biological Sciences Boise State University Boise ID U.S.A.

Abstract

Community‐type conversions, such as replacement of perennials by exotic annual grasses in semiarid desert communities, are occurring due to plant invasions that often create positive plant–soil feedbacks, which favor invaders and make restoration of native perennials difficult. Exotic annual grass control measures, such as pre‐emergent herbicides, can also alter soil ecosystems directly or indirectly (i.e. via the plant community), yet there are few studies on the topic in natural, non‐cropped landscapes. We asked how spray treatments applied to soil post‐fire with the intention of inhibiting invasive annual grasses (such as Bromus tectorum L.) and releasing existing native perennial grasses affected soil resources, a microbial process, and invertebrates in three climatically varied sagebrush steppe sites. Spray treatments included chemical herbicides (imazapic and rimsulfuron) that strongly affected plant communities and a bioherbicide (Pseudomonas fluorescens strain D7) that did not. Chemical herbicides increased soil mineral nitrogen in proportion to their negative effects on plant cover for 2 years after treatments in all sites and increased soil water and net N mineralization (measured at one site) but did not affect total carbon, nitrogen, or organic matter. Invertebrate responses to herbicides varied by site, and invertebrates increased with chemical herbicides at the highest, wettest site. We show that herbicide treatments can exacerbate pulses of mineral nutrients, which previous studies have shown can weaken ecosystem resistance to invasion. Thus, restoration strategies that increase the likelihood that desired plants can capture mineralized nutrients after herbicide application will likely be more successful.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3