Non-native plants exert strong but under-studied influence on fire dynamics

Author:

Aslan Clare E.ORCID,Dickson Brett G.

Abstract

Altered fire regimes are among the most destructive consequences of anthropogenic environmental change. Fires have increased in frequency in some regions, and invasion by fire-adapted non-native species has been identified as a major driver of this change, which results in a feedback cycle promoting further spread by the non-native species and diminishing occurrence of natives. We notice, however, that non-native species are often invoked in passing as a primary cause of changing fire dynamics, but that data supporting this claim are rarely presented. We therefore performed a meta-analysis of published literature to determine whether a significant relationship exists between non-native species presence and increased fire effects and risk, examined via various fire metrics. Our analysis detected a strongly significant difference between fire metrics associated with non-native and native species, with non-native species linked to enhanced fire effects and risk. However, only 30 papers discussing this linkage provided data to support it, and those quantitative studies examined only eight regions, five biome types, and a total of 22 unique non-native taxa. It is clear that we are only beginning to understand the relationship between non-native species and fire and that results drawn from an extremely limited set of contexts have been broadly applied in the literature. It is important for ecologists to continue to investigate drivers of changing fire regimes as factors such as climate change and land use change alter native and non-native fuels alike.

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modeling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3