Abstract
Abstract
Background
While Pace of Life Syndrome predicts behavioural differences between individuals with differential growth and survival, testing these predictions in nature is challenging due to difficulties with measuring individual behaviour in the field. However, recent advances in acoustic telemetry technology have facilitated measurements of individual behaviour at scales not previously possible in aquatic ecosystems.
Methods
Using a Walleye (Sander vitreus) population inhabiting Black Bay, Lake Superior, we examine whether life history characteristics differ between more and less mobile individuals as predicted by Pace of Life Syndrome. We tracked the movement of 192 individuals from 2016 to 2019 using an acoustic telemetry study, relating patterns in annual migratory behaviour to individual growth, and seasonal changes in optimal thermal-optical habitat.
Results
We observed two consistent movement patterns in our study population—migratory individuals left Black Bay during late summer to early fall before returning to the bay, whereas residents remained within the bay year-round. The average maximum length of migrant Walleye was 5.5 cm longer than residents, and the sex ratios of Walleye caught during fall surveys was increasingly female-biased towards the mouth of Black Bay, suggesting that a majority of migrants were females. Further, Walleye occupancy outside of Black Bay was positively associated with increasing thermal-optical habitat.
Conclusions
Walleye in Black Bay appear to conform to Pace of Life Syndrome, with migrant individuals gaining increased fitness through increased maximum size, which, given size-dependent fecundity in this species, likely results in greater reproductive success (via greater egg deposition vs. non-migrants). Further, apparent environmental (thermal) controls on migration suggest that migratory Walleye (more so than residents) may be more sensitive to changing environmental conditions (e.g., warming climate) than residents.
Funder
Canada Excellence Research Chairs, Government of Canada
Natural Sciences and Engineering Research Council of Canada
Canada-Ontario Agreement for Water Quality
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference48 articles.
1. Baccante DA, Reid DM. Fecundity changes in two exploited walleye populations. N Am J Fish Manag. 1988;8(2):199–209. https://doi.org/10.1577/1548-8675(1988)008.
2. Berglund E. Assessment and monitoring of Black Bay, lake superior walleye using fall walleye index netting (FWIN) 2002–2014. Upper Great Lakes Management Unit, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, Ontario, 37 pp; 2014.
3. Bewick V, Cheek L, Ball J. Statistics review 8: qualitative data—tests of association. Crit Care. 2004;8(1):46–53. https://doi.org/10.1186/cc2428.
4. Biro PA, Stamps JA. Are animal personality traits linked to life-history productivity? Trends Ecol Evol. 2008;23(7):361–8. https://doi.org/10.1016/j.tree.2008.04.003.
5. Borkholder BD, Edwards AJ. Comparing the use of dorsal fin spines with scales to back-calculate length-at-age estimates in walleyes. N Am J Fish Manag. 2001;21(4):935–42. https://doi.org/10.1577/1548-8675(2001)021%3c0935:CTUODF%3e2.0.CO;2.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献