Standard metabolic rate differs between rainbow trout (Oncorhynchus mykiss) growth forms

Author:

Greenaway B.1,Veneruzzo C.1,Rennie M.D.12ORCID

Affiliation:

1. Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada

2. IISD Experimental Lakes Area, Suite 325, 111 Lombard Avenue, Winnipeg, MB, Canada

Abstract

In variable environments, repeatable phenotypic differences between individuals provide the variation required for natural selection. The pace-of-life syndrome (POLS) provides a conceptual framework linking individual physiology and life histories to behaviour, where rapidly growing individuals demonstrate higher rates of resting or “standard” metabolic rate (SMR). If differences in SMR are consistent between fast- and slow-growing individuals, these differences may be important to capture in bioenergetic relationships used to describe their growth, energy acquisition, and allocation. We compared growth rates and SMR between a domesticated and wild strain of rainbow trout ( Oncorhynchus mykiss (Walbaum, 1792)) using intermittent flow respirometry. Though mass-scaling exponents were similar between strains, mass-scaling coefficients of SMR for fast-growing rainbow trout were 1.25 times higher than those for slower growing fish. These observed differences in mass-scaling coefficients between fast- and slow-growing rainbow trout were consistent with data extracted from several other studies. Bioenergetic estimates of consumption for domestic strain fish increased as the difference in SMR and wild strain fish increased, and increased as activity level increased. Our results indicate patterns of SMR consistent with POLS, and suggest that strain-specific SMR equations may be important for applications to active populations (i.e., field observations).

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3