16S amplicon-based microbiome biomapping of a commercial broiler hatchery

Author:

Rothrock Michael J.,Zwirzitz Benjamin,Al Hakeem Walid G.,Oladeinde Adelumola,Guard Jean Y.,Li Xiang

Abstract

AbstractHatcheries, where eggs from multiple breeder farms are incubated and hatched before being sent to different broiler farms, represent a nexus point in the commercial production of broilers in the United States. Considering all downstream microbial quality and safety aspects of broiler production (live production, processing, consumer use) can be potentially affected by the hatchery, a better understanding of microbial ecology within commercial hatcheries is essential. Therefore, a commercial broiler hatchery was biomapped using 16S rRNA amplicon-based microbiome analyses of four sample type categories (Air, Egg, Water, Facility) across five different places in the pre-hatch, hatch, and post-hatch areas. While distinct microbiota were found for each sample type category and hatchery area, microbial community analyses revealed that Egg microbiota trended towards clustering with the facility-related samples when moving from the prehatch to post-hatch areas, highlighting the potential effect of the hatchery environment in shaping the pre-harvest broiler-related microbiota. Prevalence analyses revealed 20 ASVs (Core20) present in the core microbiota of all sample types and areas, with each ASV possessing a unique distribution throughout the hatchery. Interestingly, three Enterobacteriaceae ASVs were in the Core20, including Salmonella. Subsequent analyses showed that Salmonella, while a minor prehatch and hatch Core20ASV, dominated the Enterobacteriaceae niche and total microbiota in the chick pad feces in the post-hatch area of the hatchery, and the presence of this Salmonella ASV in the post-hatch feces was associated with swabs of breakroom tables. These findings highlight the complexity of commercial hatchery microbiota, including identifying chick pad feces and breakroom tables as potentially important sampling or disinfection targets for hatchery managers to focus their Salmonella mitigation efforts to reduce loads entering live production farms.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3