Abstract
Abstract
Background
Important changes in microbial composition related to sexual maturation have been already reported in the gut of several vertebrates including mammals, amphibians and fish. Such changes in fish are linked to reproduction and growth during developmental stages, diet transitions and critical life events. We used amplicon (16S rRNA) high-throughput sequencing to characterize the skin and gill bacterial microbiota of farmed seabass and seabream belonging to three different developmental age groups: early and late juveniles and mature adults. We also assessed the impact of the surrounding estuarine water microbiota in shaping the fish skin and gill microbiota.
Results
Microbial diversity, composition and predicted metabolic functions varied across fish maturity stages. Alpha-diversity in the seabass microbiota varied significantly between age groups and was higher in older fish. Conversely, in the seabream, no significant differences were found in alpha-diversity between age groups. Microbial structure varied significantly across age groups; moreover, high structural variation was also observed within groups. Different bacterial metabolic pathways were predicted to be enriched in the microbiota of both species. Finally, we found that the water microbiota was significantly distinct from the fish microbiota across all the studied age groups, although a high percentage of ASVs was shared with the skin and gill microbiotas.
Conclusions
We report important microbial differences in composition and potential functionality across different ages of farmed seabass and seabream. These differences may be related to somatic growth and the onset of sexual maturation. Importantly, some of the inferred metabolic pathways could enhance the fish coping mechanisms during stressful conditions. Our results provide new evidence suggesting that growth and sexual maturation have an important role in shaping the microbiota of the fish external mucosae and highlight the importance of considering different life stages in microbiota studies.
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献