Influence of host phylogeny and water physicochemistry on microbial assemblages of the fish skin microbiome

Author:

Bell Ashley G12ORCID,McMurtrie Jamie12,Bolaños Luis M1,Cable Jo3,Temperton Ben1,Tyler Charles R12

Affiliation:

1. College of Life and Environmental Sciences, The University of Exeter , Exter, Devon EX4 4QD , United Kingdom

2. Sustainable Aquaculture Futures, The University of Exeter , Exter, Devon EX4 4QD , United Kingdom

3. School of Biosciences, Cardiff University , Cardiff CF10 3AX , United Kingdom

Abstract

Abstract The skin of fish contains a diverse microbiota that has symbiotic functions with the host, facilitating pathogen exclusion, immune system priming, and nutrient degradation. The composition of fish skin microbiomes varies across species and in response to a variety of stressors, however, there has been no systematic analysis across these studies to evaluate how these factors shape fish skin microbiomes. Here, we examined 1922 fish skin microbiomes from 36 studies that included 98 species and nine rearing conditions to investigate associations between fish skin microbiome, fish species, and water physiochemical factors. Proteobacteria, particularly the class Gammaproteobacteria, were present in all marine and freshwater fish skin microbiomes. Acinetobacter, Aeromonas, Ralstonia, Sphingomonas and Flavobacterium were the most abundant genera within freshwater fish skin microbiomes, and Alteromonas, Photobacterium, Pseudoalteromonas, Psychrobacter and Vibrio were the most abundant in saltwater fish. Our results show that different culturing (rearing) environments have a small but significant effect on the skin bacterial community compositions. Water temperature, pH, dissolved oxygen concentration, and salinity significantly correlated with differences in beta-diversity but not necessarily alpha-diversity. To improve study comparability on fish skin microbiomes, we provide recommendations for approaches to the analyses of sequencing data and improve study reproducibility.

Funder

NERC

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3