Genome plasticity of Vibrio parahaemolyticus: microevolution of the 'pandemic group'

Author:

Han Haihong,Wong Hin-chung,Kan Biao,Guo Zhaobiao,Zeng Xiaotao,Yin Shengjun,Liu Xiumei,Yang Ruifu,Zhou Dongsheng

Abstract

Abstract Background Outbreak of V. parahaemolyticus infections occurred since 1996 was linked to a proposed clonal complex, the pandemic group. The whole genome sequence provides an unprecedented opportunity for dissecting genome plasticity and phylogeny of the populations of V. parahaemolyticus. In the present work, a whole-genome cDNA microarray was constructed to compare the genomic contents of a collection of 174 strains of V. parahaemolyticus. Results Genes that present variably in the genome accounted for about 22% of the whole gene pool on the genome. The phylogenetic analysis of microarray data generated a minimum spanning tree that depicted the phylogenetic structure of the 174 strains. Strains were assigned into five complexes (C1 to C5), and those in each complex were related genetically and phylogenetically. C3 and C4 represented highly virulent clinical clones. C2 and C3 constituted two different clonal complexes 'old-O3:K6 clone' and 'pandemic clone', respectively. C3 included all the 39 pandemic strains tested (trh -, tdh + and GS-PCR+), while C2 contained 12 pre-1996 'old' O3:K6 strains (trh +, tdh - and GS-PCR-) tested herein. The pandemic clone (post-1996 'new' O3:K6 and its derivates O4:K68, O1:K25, O1:KUT and O6:K18) might be emerged from the old-O3:K6 clone, which was promoted by acquisition of toxRS/new sequence and genomic islands. A phylogenetic intermediate O3:K6 clade (trh -, tdh - and GS-PCR+) was identified between the pandemic and old-O3:K6 clones. Conclusion A comprehensive overview of genomic contents in a large collection of global isolates from the microarray-based comparative genomic hybridization data enabled us to construct a phylogenetic structure of V. parahaemolyticus and an evolutionary history of the pandemic group (clone) of this pathogen.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3