Serological and Antibiotic Resistance Patterns As Well As Molecular Characterization of Vibrio parahaemolyticus Isolated from Coastal Waters in the Eastern Province of Saudi Arabia

Author:

Elhadi NasreldinORCID,Yamani Lamya Zohair,Aljeldah Mohammed,Alomar Amer Ibrahim,Ibrahim Hafiz,Diab Asim

Abstract

AbstractVibrio parahaemolyticus belongs to the halophilic genus of Vibrionaceae family that inhabits coastal and marine environments and is a major food-borne pathogen. In the Gulf Cooperation Council (GCC) countries and Saudi Arabia in particular, there is a lack of information regarding the detection of pandemic clone or serovariants of V. parahaemolyticus pandemic clones. Here, 400 seawater samples were collected and examined for the presence of V. parahaemolyticus from 10 locations along the coast of Eastern Province in Saudi Arabia. The recovered isolates were serotyped, and studied for antimicrobial resistance, virulence genes, and markers of pandemicity using PCR and Arbitrarily primed (AP)-PCR typing patterns. All 40 isolates were tested negative for tdh, trh, and toxRS genes. Six serotypes were identified and three were clinically significant. Antibiotic susceptibility testing of isolates revealed high resistance towards penicillins, cephalosporins, and polymyxin; 60% of isolates were multi-drug resistant, whereas all isolates were susceptible to quinolones, carbapenems, sulfonamides, and tetracycline. The multiple antibiotic resistance (MAR) index among antibiotic resistance patterns of isolates revealed that 12 (30%) isolates had recorded significant MAR index higher than 0.2. AP-PCR fingerprinting could group all isolates into five distinct and identical pattern clusters with more than 85% similarity. Our findings demonstrate that pandemic serovariants of pandemic clones were not exclusively limited to strains isolated from fecal specimens of infected patients. Nine environmental strains of serotype O1:KUT, O1: K25, and O5:K17 were isolated from costal seawater, and thus the spread of these serovariants strains of pandemic clone of V. parahaemolyticus in the environment is to avoid any kind of threat to public health.

Funder

King Abdulaziz City for Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3