Author:
Dunlap Walter C,Starcevic Antonio,Baranasic Damir,Diminic Janko,Zucko Jurica,Gacesa Ranko,H van Oppen Madeleine J,Hranueli Daslav,Cullum John,Long Paul F
Abstract
Abstract
Background
Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics.
Description
Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics.
Conclusions
We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives.
Publisher
Springer Science and Business Media LLC
Reference513 articles.
1. Freudenthal HD: Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J Eukaryot Microbiol. 1962, 9: 45-52.
2. Muscatine L: The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs: Ecosystems of the World. Edited by: Dubinsky Z. 1990, Amsterdam: Elsevier, 75-84.
3. Yellowlees D, Rees TAV, Leggat W: Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ. 2008, 31: 679-694. 10.1111/j.1365-3040.2008.01802.x.
4. Johannes RE, Wiebe WJ, Crossland CJ, Rimmer DW, Smith SV: Latitudinal limits of coral reef growth. Mar Ecol Prog Ser. 1983, 11: 105-111.
5. Spalding MD, Grenfell AM: New estimates of global and regional coral reef areas. Coral Reefs. 1997, 16: 225-230. 10.1007/s003380050078.
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献