PeCLH2 Gene Positively Regulate Salt Tolerance in Transgenic Populus alba × Populus glandulosa

Author:

Ge Xiaolan12,Du Jiujun1,Zhang Lei13,Qu Guanzheng2,Hu Jianjun13ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China

2. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China

3. Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Salt is an important environmental stress factor, which seriously affects the growth, development and distribution of plants. Chlorophyllase plays an important role in stress response. Nevertheless, little is known about the physiological and molecular mechanism of chlorophyll (Chlase, CLH) genes in plants. We cloned PeCLH2 from Populus euphratica and found that PeCLH2 was differentially expressed in different tissues, especially in the leaves of P. euphratica. To further study the role of PeCLH2 in salt tolerance, PeCLH2 overexpression and RNA interference transgenic lines were established in Populus alba × Populus glandulosa and used for salt stress treatment and physiologic indexes studies. Overexpressing lines significantly improved tolerance to salt treatment and reduced reactive oxygen species production. RNA interference lines showed the opposite. Transcriptome analysis was performed on leaves of control and transgenic lines under normal growth conditions and salt stress to predict genes regulated during salt stress. This provides a basis for elucidating the molecular regulation mechanism of PeCLH2 in response to salt stress and improving the tolerance of poplar under salt stress.

Funder

Major Project of Agricultural Biological Breeding

National Key Research and Development Program of China

National Natural Science Foundation

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3