Abstract
AbstractAchieving localization with molecular precision has been of great interest for extending fluorescence microscopy to nanoscopy. MINFLUX pioneers this transition through point spread function (PSF) engineering, yet its performance is primarily limited by the signal-to-background ratio. Here we demonstrate theoretically that two-photon MINFLUX (2p-MINFLUX) could double its localization precision through PSF engineering by nonlinear effect. Cramér-Rao Bound (CRB) is studied as the maximum localization precision, and CRB of two-photon MINFLUX is halved compared to single-photon MINFLUX (1p-MINFLUX) in all three dimensions. Meanwhile, in order to achieve same localization precision with 1p-MINFLUX, 2p-MINFLUX requires only 1/4 of fluorescence photons. Exploiting simultaneous two-photon excitation of multiple fluorophore species, 2p-MINFLUX may have the potential for registration-free nanoscopy and multicolor tracking.
Funder
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
the State Key Research Development Program of China
Shenzhen Science and Technology Program
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献