Single-molecule localization microscopy at 2.4-fold resolution improvement with optical lattice pattern illumination

Author:

Cao Xiaojie1,Li Mingqiang,Li Qian,Fan Chunhai,Sun Jielin1,Gao ZhaoshuaiORCID

Affiliation:

1. Shanghai Jiao Tong University

Abstract

Traditional camera-based single-molecule localization microscopy (SMLM), with its high imaging resolution and localization throughput, has made significant advancements in biological and chemical researches. However, due to the limitation of the fluorescence signal-to-noise ratio (SNR) of a single molecule, its resolution is difficult to reach to 5 nm. Optical lattice produces a nondiffracting beam pattern that holds the potential to enhance microscope performance through its high contrast and penetration depth. Here, we propose a new method named LatticeFLUX which utilizes the wide-field optical lattice pattern illumination for individual molecule excitation and localization. We calculated the Cramér-Rao lower bound of LatticeFLUX resolution and proved that our method can improve the single molecule localization precision by 2.4 times compared with the traditional SMLM. We propose a scheme using 9-frame localization, which solves the problem of uneven lattice light illumination. Based on the experimental single-molecule fluorescence SNR, we coded the image reconstruction software to further verify the resolution enhancement capability of LatticeFLUX on simulated punctate DNA origami, line pairs, and cytoskeleton. LatticeFLUX confirms the feasibility of using 2D structured light illumination to obtain high single-molecule localization precision under high localization throughput. It paves the way for further implementation of ultra-high resolution full 3D structured-light-illuminated SMLM.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3