Reduced graphene oxide coating enhances osteogenic differentiation of human mesenchymal stem cells on Ti surfaces

Author:

Kang Moon Sung,Jeong Seung Jo,Lee Seok Hyun,Kim Bongju,Hong Suck Won,Lee Jong Ho,Han Dong-WookORCID

Abstract

Abstract Background Titanium (Ti) has been utilized as hard tissue replacement owing to its superior mechanical and bioinert property, however, lack in tissue compatibility and biofunctionality has limited its clinical use. Reduced graphene oxide (rGO) is one of the graphene derivatives that possess extraordinary biofunctionality and are known to induce osseointegration in vitro and in vivo. In this study, rGO was uniformly coated by meniscus-dragging deposition (MDD) technique to fabricate rGO-Ti substrate for orthopedic and dental implant application. Methods The physicochemical characteristics of rGO-coated Ti (rGO-Ti) substrates were evaluated by atomic force microscopy, water contact angle, and Raman spectroscopy. Furthermore, human mesenchymal stem cells (hMSCs) were cultured on the rGO-Ti substrate, and then their cellular behaviors such as growth and osteogenic differentiation were determined by a cell counting kit-8 assay, alkaline phosphatase (ALP) activity assay, and alizarin red S staining. Results rGO was coated uniformly on Ti substrates by MDD process, which allowed a decrease in the surface roughness and contact angle of Ti substrates. While rGO-Ti substrates significantly increased cell proliferation after 7 days of incubation, they significantly promoted ALP activity and matrix mineralization, which are early and late differentiation markers, respectively. Conclusion It is suggested that rGO-Ti substrates can be effectively utilized as dental and orthopedic bone substitutes since these graphene derivatives have potent effects on stimulating the osteogenic differentiation of hMSCs and showed superior bioactivity and osteogenic potential.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3