Comparative study of cell interaction and bacterial adhesion on titanium of different composition, structure and surfaces with various laser treatment

Author:

Nekleionova Anna,Moztarzadeh Jana,Wiesnerova Lucie,Dvorakova Jana,Martinek Karel,Kulda Vlastimil,Hradil David,Duchek Michal,Babuska VaclavORCID

Abstract

Abstract Titanium and its alloys are commonly used in modern implantology. Cell viability on the surface of titanium implants depends on the surface topography, roughness, and wettability. Laser treatment is a successful method to control the surface morphology. The aim of this study was to comprehensively investigate the effects of laser ablation on titanium surfaces and their interactions with cells and bacteria. Cell adhesion, proliferation, and bacterial retention on smooth and laser-textured samples of commercially pure and nanostructured titanium of two grades were evaluated. Femtosecond laser treatment effectively enhances the wettability. Titanium grade four exhibits superior adhesion and proliferation rates when compared to titanium grade two. The cytotoxicity of nanostructured titanium is significantly lower, regardless of the surface treatment. Laser treatment resulted in increased short-term cell proliferation on grade two titanium and long-term cell proliferation on nanostructured grade two titanium only. Although the laser ablation has a limited effect on bacterial adhesion, the coverage of less than 1% in most samples indicates that the material itself has an antibacterial effect on the bacterial strain Streptococcus oralis. These findings provide valuable insights into how different material structures and surface treatments can affect cellular response and antibacterial properties for potential use in dental implantology.

Funder

Cooperatio Program DIAG

SVV

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3